QMIHSC2018-click-to-play-video
Play Video

STREAM or DOWNLOAD?

Click the large image above to stream this video directly from Vimeo at the best resolution for your device.

If you need to save a copy of the video to your computer, you can click the blue DOWNLOAD VIDEO button and a copy of the video file will be downloaded to your hard drive. The file is an mp4 file in 720p HD format (suitable for projection to a large screen) and will take some time to download. Please be patient.

If you experience any problem with either option please email Doug or Ed for personal assistance.

ACARP 26070 Industrialisation of Proof of Concept Wall Flow DOC/DPF System

Nick Coplin – General Manager, Engineering Services, Orbital Australia Pty Ltd

ABSTRACT

Australian Coal Association Research Program (ACARP) project C25073 was proposed by industry stakeholders seeking a solution that would both improve underground air quality and reduce the operational costs associated with currently implemented disposable filter technology used to control diesel particulate emissions in the underground coal mining environment. The follow-on C26070 project sought to industrialise the proof-of-concept (PoC) wall-flow diesel particulate filter (DPF) system to comply with relevant safety and health standards.

The technology has demonstrated significant DPM emissions reduction, comparable to the incumbent disposable technology, and has demonstrated the ability to meet NSW MDG43 requirements for year 2020. Testing noted that whilst the technology increased modal NO2 formation, it was compliant over typical operational duty cycles.

One of the key benefits with the use of a wall-flow DPF system is its tamper-proof design, mitigating the risk of operating unfiltered diesel plant in poorly ventilated areas. Elimination of the need for continual replacement of disposable filters provides significant operational savings estimated to be up to 80% of the incumbent technology.

The robustness of the aftertreatment solution can be maintained with both appropriate design and the use of embedded real-time, and near-real-time, electronic monitoring technology.